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Video-based facial animation with detailed appearance texture’
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Abstract Facial shape transformation described by facial animation parameters {FAPs) involves the dynamic movement or defor-
mation of eyes, brows, mouth, and lips, while detailed facial appearance concerns the facial textures such as creases, wrinkles, etc.
Video-based facial animation exhibits not only facial shape transformation but also detailed appearance updates. In this paper, a novel algo-
rithm for effectively extracting FAPs from video is proposed. Qur system adopts the ICA-enforced direct appearance model (DAM) to
track faces from video sequences; and then, FAPs are extracted from every frame of the video based on an extended model of Wincandidate
3.1. Facial appearance details are transformed from each frame by mapping an expression ratio image to the original image. We adopt
wavelet to synthesize expressive details by combining the low-{requency signals of the original face and high-frequency signals of the expres-
sive face from each frame of the video. Experimental results show that our proposed algorithm is suitable for reproducing realistic, expres-
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sive facial animations.

Keywords: image based rendering, facial animation, texture transform.

In graphics, image processing and computer vi-
sion, performance driven facial animation has been an
interesting research topic, and has been widely used
in entertainment industry, virtual human, artificial
life, on-line gaming, teleconference, wireless pres-
ence, and so on. Research work in this field was fo-
cused on three main parts: face detection and track-
ing, FAPs (facial animation parameters) extraction,
texture mapping and driving 3D model.

Early efforts in face detection and tracking can
be dated back to the 1970s!'). Over the past decades
there were lots of research works addressing several
important aspects of face modeling and anima-

(23] The difficulties in reproducing life-like

tion
characters in facial animation brought the perfor-
mance driven approach, in which tracked human ac-
tors control the animation. No wonder that accurately
tracking facial feature points or edges is important to
maintain consistent and life-like quality of animation.
Techniques used for tracking face can be generally
classified into feature-based tracking and statistical
training-based approaches. Representative techniques

of the former include snakes'®)

and optical flow.
Snakes are widely used to track intentionally marked

facial features. Many systems apply tracked snakes

coupled with underlying muscle mechanisms to drive

[5:6) Muscle contraction parameters

facial animation
are estimated according to the tracked facial feature
displacements in video sequences. Because the track-
ing error accumulates over image sequences, the
method may lose the tracking contour. Colored mark-
ers can aid in tracking facial expression. However,
marks on the face are in general intrusive and imprac-
tical. On the other hand, optical flow!”!
natural feature tracking and therefore avoids the need
18.9] " This approach
also has limited applications because the complete and

performs
for intentional marks on the face

accurate knowledge of face is not used.

Statistical training-based approaches employ a
training procedure that converts the image space to a
multi-dimensional feature space. Techniques used to
derive this feature space include principal component
analysis (PCA) and factor analysis (FA). Active ap-
pearance model (AAM)!19712) is a typical example of
statistical training-based approaches. The constraints
adopted for feature space definition can be classified
into three types: (1) structure information con-
straints, (2) color information constraints, (3) tex-
ture information. And statistical training-based ap-
proaches make full use of the above three types of
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constraints. Based on the tracked 2D feature mo-
tions, FAPs can be extracted and used to directly
drive facial animationt*'#).

Our work presented in this paper addresses the
following three aspects: (1) Video-based face track-
ing: taking into account the complex correlation be-
tween components in video tracking, we adopt ICA
(independent component analysis) to deal with com-
ponents statistically independent and the precision is
increased by about 7% . (2) FAPs extraction based
on the 2D tracked results: we propose a novel algo-
rithm to effectively and robustly extract FAPs. (3)
Facial expressive mapping: we adopt a method to
transform facial appearance details from the source
character (e.g. excessive wrinkles, lentigines, fleck
in the video), while preserving the illumination effect
of the original image.

1 Face detection and tracking

The concept of AAM was firstly introduced by
Coots et al. 1), and since then AAM has attracted a

(5] AAM is a powerful model for
[16,17]. It

lot of attentions
face alignment, recognition and synthesis
adopts the subspace analysis techniques to model both
shape variation and texture variation, and sets up the
correlations between them. However, the analysis
conducted by Hou et al. [*®! on mutual dependencies of
shape, texture and appearance parameters in the
AAM feature space models shows that there exist
some admissible appearances that cannot be modeled
and hence cannot be investigated by AAM. Thus,
they presented a direct appearance model (DAM) to
cope with this problem, which employs the texture
information to predict the shape and update the esti-
mates of position and appearance. DAM improves the
convergence and accuracy significantly.

Qur algorithm is based on DAM, but enforces
ICA on DAM to resolve the correlation between com-
ponents, which frequently causes problems for preci-
sion. The ICA embedded in DAM can also reduce the
dimensions of feature space and thus increase the
tracking speed.

1.1 Active appearance model (AAM)

Assume that a training set is given as W =

[(S¢»> To)t, where shape Sq= ((x1, 1), =, (x4,
2K . . .

%)) € R™" is a sequence of K points on the 2D im-

age plane, and the texture T is the patch of image

pixels enclosed by Sg. Let s be the mean shape which
is modeled by % principal modes learned from the
training shapes using PCA. Let ¢ be the mean texture
which is obtained after the shapes are aligned to the
tangent space of s. An instance of shape can then be
represented as

s =s+ @b, (D
where b, is a vector in the low dimensional shape sub-
space; @, is the matrix consisting of & principal or-
thogonal modes of variation in {Sg}, obtained from

the training set.

Similarly, the PCA texture model can be ex-
pressed as t = ¢ + @b, ; the appearance of each exam-
ple is a concatenated vector by

b sts st;I'(s - 5) (2)
b | @fe-t) )
Then,
b=5b+dypb,, (3)

where @,, is the matrix consisting of principal orthog-
onal vectors of the variation in {b | for all training
samples} . The object instance, (b, ), is synthesized
by warping the pixel intensities of ¢ onto the geome-
try of shape s. In AAM, the residual vectors between
the model and image, 8f = fpodel — Eimsge» are re-
gressed against the known displacement vectors,
db,, using the principal components regression:
ob, = @, 3t. Embedded into an iterative updating
scheme, this has been proven to be a very efficient
way of matching these models with novel images.

1.2 Direct appearance model (DAM)

Because mapping from the texture space to the
shape space is many-to-one, the shape parameters
should be determined completely by texture parame-
ters but not wvice versa. DAM consists of a shape
model, a texture model and a prediction model. Un-
like AAM’s crucial idea of combining shape and tex-
ture information into an appearance model, DAM
predicts the shape parameters with the texture param-
eters. Based on an assumption concerning a linear re-
lationship between shape and texture, the prediction
function is given by

s = Rt + &, (4)
where £ is the error vector and R is a projection ma-
trix, and its objective cost function is defined as

C(R) = E(ee") = tr(ge?). (5)
Then, its minimum cost solution is
R* = E(aD[E(ut™) ]!, (6)

During searching, we employ 8T’ s principal compo-
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nents, 8T, to predict the position displacement

3s = R8T, (7
where R, is the prediction matrix learned from linear
regression upon |8s,3T }.

1.3 Independent component analysis (ICA)

PCA belongs to unsupervised learning algorithms
which discover significant features in the input data
without a teacher. If the source data conforms to
Gaussian distribution, PCA can extract the feature

space accurately. However, few samples adhere to
the Gaussian distribution exactly. ICA!'®! is an alter-
native approach which allows its components to be as
statistically independent as possible. Since the relativ-
ity of components is a very sensitive factor for track-
ing face accurately, we apply ICA to the set of princi-
ple components driven from PCA to improve the inde-
pendency with the same dimensions as PCA? . Ex-
periments on static images showed that the error rate
can be reduced about 7% by performing ICA on PCA
(Fig.1).

Fig. 1. The initialization of PCA (upper two rows, 2.6 ms) and ICA (lower two rows, 1.7 ms).

Assuming that the principal components are in-
cluded in Eq. (3) after performing PCA, our ap-
proach adopts ICA to find an m X m matrix W as de-
scribed by Eq. (8). Note that when U is a matrix of
independent components, W is proper. In order to
calculate W, we conduct an iterative procedure

AW = gl 1+ = 200U W, (®)

where 7 is a learning parameter, I is an identity ma-
trix; a sub-variable of Y = ¢(U) is defined as

yi = 1/(1+e ™). (9)
In our experiments, 7 is set to be 0.2, and the initial
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value of every sub-variable of W is set to be a random
value between (0.0 and 0.01.

For the chose
grayscale face images with size of 320 X 240 as train-
ing samples and selected input component in grayscale
with gradient of 5X 5. There are 260 samples in our
training dataset containing typical expressions and
their rotations for up, down, left, and right within a
small angle ( < 30°). Appearance details contain
mainly forehead wrinkles, brows wrinkles, jaw wrin-

kles, crow’s-feet, and nose wing wrinkles.

experimental purpose, we

We applied PCA to the above training dataset at
four different significance levels, and ICA to the re-
sults of PCA. The significance levels 92%, 95%,
98% and 99.5% produced 14 basis, 19 basis, 26 ba-
sis, and 38 basis, respectively. We tested 50 face im-
ages. Table 1 shows the analysis error for PCA and
ICA, where the analysis error is measured by

Dl = 1 |
g = 22—
2
In Eq. (10), !,, and I, denote the length of the m-th
edge after triangulation of feature points, I, is the ex-

act length, while [, is the evaluated length with PCA
or ICA.

(10)

Table1. Error rate of PCA and ICA at significance levels of 92%,
95%, 98%, and 99.5%
PCA ICA
Significance level Error samples/ Error samples/
All samples All samples

92.0% 28.33% 21.16%

95.0% 14.08 % 8.55%

98.0% 11.87% 4.76%

99.5% 10.54% 2.13%

2 Extracting FAPs

Facial animation parameters ( FAPs) are widely
used to describe the shape deformation and the associ-
ated feature displacements during facial expressions.
FAPs are in general derived using 2D feature points
tracked by statistically training-based methods. How-
ever, this method is not robust and sometimes may
produce singularity expressions (e. g. skew eyes,
malformed mouth) in driving animation, for the im-
portant facial structure-constraint information is lost.

Instead of tracking 2D points to get FAPs to
control the movement of the 3D wire-frame model,
Ahlberg[”] suggested a robust technique for extract-

ing FAPs, which applies feature space analysis to the
FAPs of MEPG4. However, the correlation between
components of FAPs is a sensitive factor affecting the
performance of statistical training-based method. If
the 3D parameterized model has complex correlation,
the processing will be slow. It seems that the method
is suitable for the simplified 3D parameterized model
only. Unfortunately, with the simplified model, it is
impossible to describe complex facial expressions ac-
curately.

Next, we will propose a robust and efficient al-
gorithm to better extract FAPs, while still adhere to
the statistical training-based methods to track 2D fea-
tures in real-time.

2.1 Selecting a parameterized model

The facial parameterized model selected should
reflect the facial physiological structure constraint in-
formation. In other words, the model has to satisfy
two basic constraints: a) the movement of a point on
the face is related to many relevant expression param-
eters; b) an expression parameter can move many rel-
ative 3D points. This many-to-many relationship
must be consistent with the physical transformation of
a face during face expression. An awkward model
may lead to unnatural results. We find that the facial
model of MEPG4 can satisfy this requirement nicely.
Nevertheless, when a large set of parameters is in-
volved, its extraction from video is by no means a
trivial task. We then select a sub-model of MPEG4 to
represent major facial expressions. We make an ex-
tension to the Wincandidate3. 1121} model (WCM),
which is capable of describing some facial shapes and
expressions accurately with a simple set of parameters
by adding three shape parameters and four animation
parameters for generality.

According to AAM, after triangulation of the
face with the feature points, the distribution of trian-
gle centers should represent the five sense organs on
the face properly. The 3D mesh of WCM, however,
cannot finely meet this requirement, due to the sparse
distribution of feature points in some regions. To im-
prove the results of face detecting and tracking, we
revise the originall WCM model by inserting some
supplemental points acting as the mediate points (see
the blue points in Fig.2 (b)). We refer this extent
model as IWCM. By applying IWCM to the 3D mesh
face model, an original template can be created with
ten paths (Fig.2). The ten paths are now all closed,
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with the mouth being a hole. Qur IWCM model has
84 parameters in total. To further improve the effi-
ciency and robustness, we select only 19 parameters
among them with which most of the typical facial ex-

(a)

Fig. 2.

pressions can be described, including upper lip rais-
ing, jaw drop, eyebrow lowering, lip corner depress-

ing, outer brow raising, eye closing, and nose wrin-

kle.

Mesh of WCM contains feature points. (a) Original mesh of WCM; (b) generated shape with ten paths, blue points are the ver-

tices added in IMCM; (¢) mesh with open mouth expression; (d) the shape corresponding to {¢); (e} the result after triangulation of fea-

ture points.

2.2 Extracting FAPs

Based on the multistage approach for camera cal-

ibration!??!

, we calculate separately the exterior and
interior camera parameters during camera calibration.
We first calibrate the following § interior parameters
by using the general pin-hole camera model, includ-
ing: (u, v), the coordinates of the principle point;
(fes fy), the scale factors of x and y axes in image
space; n, the parameter describing the skew of the
two image axes. The method is similar to Zhang[23],
which makes use of a planar calibration pattern. To
improve the tracking accuracy, we took the mean val-
ue of 20 experiments with 1000 frames each time.
Our experiments used a desktop camera, and estimat-
ed the interior parameters only once regarding a stable
circumstance.

We take the frontal neutral expression at the
first frame. There are two approaches for estimating
the exterior parameters: 1) Using two consecutive
frames fi» fi+1(% means the k£th frame) directly;

2) capitalizing on the first frame, which includes rwo
steps: first, we estimate the movement of fi, fi+1
to the first frame separately, then we obtain the rela-
tive movement between f; and f,.;. The first ap-
proach is efficient, but may produce accumulated er-
rors. We adopt the second approach, in which the
first frame is only calculated once. When tracking a
video, the initialization of DAM is performed in the
first frame, then the convergent positions of the fea-
ture points are adopted as initial locations in the next
frame and likewise for the consecutive frames.

The exterior parameters and the displacement of
the feature points are calculated consequently. They
are optimized alternatively until attaining the required
precision. There are six exterior parameters {a, 8, 7,
X,, Y., Z,) and 19 expression unit parameters to be
estimated. We use conjugate gradient method to solve
the optimization problem, and the target functions
about a pair of 3D points p(z', y', z') in mesh and

2D points g(I., I.) in image are as follows:

Ii af, +dn + gu bf, +en + hu cf, +sn+gu pfi+agnt ru ¢(x:)
w|L | = df, + gv ef, + hv sfy + iv qfy + rv :[;Eyi; , (1)
. z
1 g h ) 1
where w is an arbitrary scalar, i €[0,71], and
a d g cosycosa — sinasinfsiny — sinacosf cosasiny + sinasinfcosY
b e h|= |cosYsina + cosasin@siny  cosacosf  sinasiny — cosasinficosY |, (12)
c 5 1 — cosfsinY sinf cosfcosY
(p q rl=1[-aX,-b6Y -cZ, —dX,—eY ~sZ - gX, - hY —iZ], (13)
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ORI (14)

i=0 Q=0
where m =18, N, is the number of vertices on the
3D mesh affected by the jth unit animation parame-

ter; kjl-Q is the coefficient of FAPs acting on the coor-

dinateof [ ({€(x,y,2)).

The constraint dataset includes 72 pairs 2D-3D
points related with 19 unit animation parameters. In
our experiments, we set the significance levels as
96% and 98%, and extracted FAPs with training
dataset of 30, 50, 70, 90, and 110 samples, respec-
tively. We compared the following two methods
while extracting the 19 FAPs based on ten videos of
31458 frames: (1) Performing feature space analysis
to 2D feature points, extracting FAPs based on 2D
tracked results; (2) performing feature space analysis
directly to the 3D face model. Fig.3 shows the re-
sults.

98%
41
! A 96%
> 1.2 _ Ve
1ok A&
5 -
g osf %r - '/*' 98%
-
= Al/
L - 96%
0.6 . — r{’ — ]
0.2 r
30 50 70 90 110

Samples

Fig. 3. Efficiency of extracting FAPs. Solid lines are produced by
method (2), and dash lines are produced by method (1).

3 Transforming appearance details

Note that the effects of FAPs do not cover the
personalized appearance details of a face such as fore-

head wrinkle, nose wing wrinkles, etc. We model
appearance details by two steps: a) alignment of the
major facial features such as nose, eyes, mouth, jaw,
eyebrows; b) transforming appearance details infor-
mation (e.g. wrinkle density, depth, illumination),
which is related to the expressions. Till now few re-
sults have been reported upon this issue. Galton!2*!
generated multiple photographic images of several
faces after aligning the eye positions. Later develop-
ment adopted the technique of image warping[25 ) to
map the component face images onto the mean shape.
Tiddeman!?% presented a wavelet-based method for
transforming facial texture, in which the low-fre-
quency signals of the resultant image are from the o-
riginal image while the high frequency signals are ex-
tracted from another image. Liul?"! synthesized real-
istic expressive facial expressions by mapping an ex-
pression ratio image (ERI) to another face image.
Liu’ s method requires two reference images and is
sensitive to the direction of the light.

We have developd a novel technique to transform
texture details, which can keep the character of origi-
nal face, and the desired expression details trans-
formed from another image with the illumination ef-
fects of the original face (Fig.4). Given an original
face image A with frontal neutral expression and an-
other face B with special expression, we derive a low-
pass filter from a cubic B-Spline (H) and a high-pass
filter from a real Gabor (G). For an original image
X, the first layer pyramid decomposition is defined as

X)) =X +X+X,, (15)
where X’ represents the low frequency signals and
X;, X_: the image signals of high frequency. Note
that the low frequency signals include the illumination
information. Similarly, the second layer decomposi-
tion is expressed by

X)=X"+X+X,. (16)

Fig. 4. The procedure of transforming appearance details. (A) Source neutral expression face; (B) source face with appearance detail;
(C) the third face: medi-face; (D) transforming details from B to C; (E) expression mapping with A * (D/C).
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Now, collapsing the pyramid by ( AB) =
A"@B. @B;, we can generate the mixed image
(AB)’, where ® indicates a pyramid synthesis opera-
tor. Similarly, by (AB)'@B;@B;, we can reproduce
the final transforming expression details. The ap-
proach may face a problem in some cases as shown in
Fig.S, in which some flecks on the original image A
are lost due to low-pass filtering. To address this
problem, we introduce medi-face C, which corre-
sponds to the neutral face of B. First, we produce a
texture image D by transforming details of B to C
with special ratio . The equations are

(BC) = (1 -1:)C'®:(B.®B)), (17)
and

D= (1-:)(BC)@:(B.@B,)). (18)
The coefficient 1 (0< t<1) is used to control the ex-
pression extent (Fig.6). With C and D, an expres-
sion ratio image (ERI) R is generated. After map-
ping R to A, the final expressive face E can be gen-
erated, which maintains the original illumination of
A with appearance transforms details from B.

A ——.

Fig. 5. Transforming wrinkle by wavelet filter.

We conducted three experiments on expression
details transfer. The texture details are the forehead
wrinkles in the bottom images of Fig. 6. Figs. 6, 7,
8 show more examples.

4 Video based face animation

Some work has been done on video-based facial

animation/2®! ,

(e.g. the Water’ muscle model'?®!) . Previous work

including simple parameter models

mostly relied on some auxiliary facilities, such as
markers, to track the feature points. The produced
expression was relatively simple. In our system, fa-
cial animation is driven in three steps: 1) creating a

personalized 3D model M; 2) extracting the FAPs of
another face from a video (see Section 2); 3) apply-
ing the FAPs to M to drive facial animation. In this
section, we will address Steps 1) and 3) in detail.

4.1 Creating individual 3D model

We adopt the orthogonal image method'*")
(Fig.9) to generate the simplified individualized
parametric model. We obtain the 2D estimated result
£ of a frontal neutral expression image first. Some
offset (e. g, at the eye socket, nose wing) may ap-
pear. We then need to adjust those inexact FAPs of
£ . Based on £, we can extract the facial shape pa-
rameters (FSPs), similar to extracting FAPs. Re-
gardless of rotation, this result has high precision.
We then utilize profile face to adjust Z unit parame-
ters (ZUPs). In our IWCM, only five ZUPs (nose
lifting, checks lifting, eyes lifting, mouth lifting,
and eyebrow lifting) require interactive adjustment.
The Z coordinate of other vertices can be fit by

flp) = 2ol p -2 1), (19)

where p' is a group of 3D mesh points and «' is their
corresponding 2D displacement. We can obtain the
coefficients of ¢' by «' = f(p'). We select RBF as

D(r) =e*. (20)
The constraint equation is

u' = f(P')’

2. =0, (21)

Ec' cp =0
For the texture mapping, we adopt bilinear interpola-
tion.

4.2 Drnving facial animation

Driving facial animation in our case is to drive a
3D facial model with expressions mimicing the video
samples. This can be achieved conveniently with our
extracted FAPs. Warping 3D model, and transform-
ing the appearance details are the two key operations
of expression cloning.

Note that a single animation parameter may shift
multi-vertices, and the displacement of one vertex is
the accumulated effects of several animation unit pa-
rameters. This mutual relation has been effectively
simulated by our proposed IWCM. With this model,
we can easily transform the shape of five sense organs
by applying FAPs extracted from the video.



304 www. tandf. co. uk/journals Progress in Natural Science Vol.16 No.3 2006

Fig. 6. Tracking a video (the left two wlumns) and extracting FAPs to drive facial animation ( the right two columns) including acts of
rotation, opening mouth, raising brows, closing eyes, and wrinkling nose; the lower row is the front neutral face used as texture, the sam-
ple of forehead wrinkle and brows wrinkle, respectively.

?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
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(a) (b) (c) (d)

Fig. 7.

Transform expressive details with various ratios of (a)

0.2; (b) 0.4; (¢) 0.6;5 (d) 0.8.

Fig. 8.
(c) and (d) transform expression details with ratio £ =0.2,0.4,

(a) Original frontal face with neutral expression; (b),

0.6, respectively, when raising brows.

(b)

Fig. 9. (a) The frontal neutral expression; (b) the profile neu-
tral expression face; (¢) 3D textured face created by (a) and (b).

Texture details include the distribution of the
global wrinkles, and the shape of each wrinkle. After
warping the facial mesh, a reasonable distribution of
wrinkles should be incorporated. However, modeling
the shape of each individual wrinkle is difficult. Only
a few papers try to express the details by the geomet-
ric model. Based on the study of image processing,
the formulation of wrinkle details can be apprehended
from macrocosmic, by pseudo-imitation to produce
the acceptable visual effect. Qur idea is also based on
macrocosmic imitation (Fig.8). The shape of a wrin-

kle is controlled by FAPs. In Egs. (17) and (18),
the value of parameter ¢ is determined by the coeffi-
cients of FAPs. When multiple unit expression pa-
rameters act in the same region, we combine them by
simple linear combination. Our method of expression
transformation not only is simple, but also can pro-
duce satisfactory visual appearance. We establish a li-
brary of texture-detail samples to store some represen-
tative expressions. Their coefficients are set to be 1.0
when generating a typical expression. Accordingly,
these coefficients are set to be 0.0 for the neutral ex-
pression. If the sample in library is identical with the
face to be driven, the appearance details of the per-
sonalized face should be adopted; otherwise, the tex-
ture details are cloned to drive a new face.

5 Discussion and conclusion

Expressions, illumination and variant-views are
the three key factors affecting the results of face
tracking. In this paper, we mainly focus on extract-
ing FAPs and transforming appearance details. For
training and tracking, we adapt the gradient of a § X
5 peighborhood as input component, which can great-
ly improve illumination independence. Nowadays,
techniques including sampling under various illumina-
tions are available, and can be selectively incorporated
into our system. QOur current system can be extended
conveniently to track the same faces from multi-
views. We may establish 5 sample libraries about five
views ( — 90— — 60, — 60— — 30, - 30—30, 30—
60, 60—90), ') which are stored according to the
rotation angle, and compute the in-between angles of
rotation by interpolation.

We have proposed and developed an effective
system for video-based facial animation with appear-
ance details cloning. Our system includes four pro-
cesses: detecting and tracking face, extracting FAPs,
facial appearance transfer, and driving facial expres-
sion animation. In comparison with others approach-
es, our main contributions in this work are as fol-
lows: (1) we have embedded ICA with DAM to pro-
duce basis vectors that are statistically independent,
which increases the detecting and tracking precision
by about 7% ; (2) we have proposed a novel algo-
rithm to extract FAPs rapidly and robustly, based on
the 2D tracked results; (3) we have developed an ef-
fective method to transfer appearance details, while
holding the original character of original face, and
keeping the original illumination. In addition, ex-
pression extents are determined by FAPs.



306

www . tandf. co. uk/journals

Progress in Natural Science Vol.16 No.3 2006

Acknowledgements The authors would like to thank Dr.

Mikkel B. Stegmann for his helpful discussions, thank Mr. Wu
Yuan, Tang Feng, Zhou Weihua, and Prof. Bao Hujun for
their suggestions and support.

References

10

11

12

13

14

Sakai T., Nagao M. and Kanade T. Computer analysis and classi-
fication of photographs of human faces. In: Proc. First USA-Japan
Computer Conference, 1972, 2—7.

Guenter B., Grimm C., Wood D. et al. Making faces, In: Sig-
graph Proceedings 1998, 1998, 3(9): 55—66.

Pighin F., Hecker J., Lischinski D. et al. Synthesizing realistic
facial expressions from photographs. In: Siggraph Proceedings,
1998, 75—84.

Kass M., Witkin A. and Terzopoulos D. Snakes: Active contour
models. International Journal of Computer Vision, 1987, 1(4):
321—331.

Magnenat-Thalmann N., Cazedevals A. and Thalmann D. Mod-
elling facial communication between an animator and a synthetic ac-
tor in real time. In: Proc. Modeling in Computer Graphics. Geno-
va, Italy, June 1993, 387—396.

Terzopouos D. and Szeliski R. Tracking with Kalman snakes. In:
Active Vision, MIT Press, 1992, 3—20.

Horn B.K.P. and Schunck B. G. Determining optical flow. Artifi-
cial Intelligence, 1981, 17: 185—203.

Essa I.A., Basu S., Darrell T. et al. Modeling, tracking and in-
teractive animation of faces and heads using input from video. In:
Proceedings of Computer Animation Conference, Geneva, Swirzer-
land, 1EEE Computer Society Press, June 1996, 172—179.

Essa I. A., Darrell T. and Pentland A. Tracking facial motion.
In: Proceedings of the IEEE Workshop on Non-rigid and Articulate
Motion. Austin, Texas, November, 1994, 36—42.

Cootes T., Edwards G.). and Taylor C. J. Active appearance
models. In;: the 5th Proc. European Conference on Computer Vi-
sion, 1998, 484—498.

Coots T.F., Edwards G.]}. and Taylor C.]. Active appearance
models. In; ECCV98, 1998, 2, 484—498.

Edwards G.J., Coots T.F. and Yaylor C.J. Interpreting {ace im-
ages using active appearance models. In: Proc. International Con-
ference on Automatic and Gesture Recognition, Japan, 1998,
300—305.

Essa I. A., BasuS., Darrell T. et al. Modeling, tracking and in-
teractive animation of faces and heads using input from video. In:
Proceedings of Computer Animation Conference, Geneva, Switzer-
land: IEEE Computer Society Press, 1996, June, 123—129.
Ahlberg ], MPEG-4 Facial Animation: The Standard, Implemen-
tation and Applications. New York: John Wiley & Sons, 2002,
103—112.

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

Cootes T.F. and Tayor C.]. Statistical models of appearance for
computer vision. Draft report, Wolfson Image Analysis Unit, Uni-
versity of Manchechester, December 2000, 84—86.

Blanz V. andVetter T. A morphable model for the synthesis of 3d
faces. In: SIGGRAPH’ 99 Conference Proceedings, 1999,
187—194.

Blanz V. and Vetter T. A morphable model for the synthesis of 3d
faces. In: Siggraph’99 Conference Proceedings, 1999,
187—194.

Hou X.W., LiS.Z. and Zhang H.]. Direct appearance models.
In: Proceedings of IEEE International Conference on Computer Vi-
sion and Pattern Recognition. Hawaii, December, 2001,
828—833.

Bell A.J. and Sejnowski T.]. An information-maximization ap-
proach to blind separation and blind deconvolution. Neural Compu-
tation, 1995, 6: 1129—1159.

Hyvarinen A. Survey on independent component analysis. Neural
Computing Surveys, 1999, 2, 94—128.

Ahlberg J. Candide-3-an updated parameterized face, Report No.
LiTH-ISY-R_2326, Dept.of EE, Linkoping University, Sweden,
January 2001. http: //www. icg. isg. isy. liu. se/candide.

Zhang Z. A new multistage approach to motion and structure esti-
mation by gradually enforcing geometric constraints. In: The 3rd
Proc. Asian Conference on Computer Vision ( ACCV’98), Hong
Kong, January 1998, 567—574.

Zhang Z. Y. A flexible new technique for camera calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2000,
22(11); 1330—1334.

Galton F.J. Composite portraits. Nature, 1878, 18: 97—100.
Ruprecht D. and Muller H. Image warping with scattered data in-
terpolation. IEEE Computer Graphics and Applications, 1995,
15(2): 37—43.

Tiddeman B., Burt D. and Perrett D. Prototyping and transform-
ing facial textures for perception research. IEEE Computer Graph-
ics and Applications, 2001, 21: 42—50.

LiuZ.C. Shan Y. and Zhang Z. Y. Expressive expression mapping
with ratio images. In: Siggraph' 01 Conference Proceedings,
2001, 271—276.

Parke F. I. Computer generated animation of faces. In: Proc.
ACM Annual Conf., 1972, 451—457.

Waters K. and Frisbie J. A coordinated muscle model for speech
animation. Graphics Interface, 1995, 163—170.

Horace H.S.1. and Yin L.J. Constructing 3D individualized head
model from two orthogonal views. The Visual Computer, 1996.
12(5): 254—266.

ZhangZ.Q., Zhu L., Li S.Z. et al. Real-time multi-view face
detection. In: Proceedings of the Sth International Conference on
Automatic Face and Gesture Recognition. Washington, DC, USA,
May, 2002, 20—21.



